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Critical “dimension” in shell model turbulence

Paolo Giuliani and Mogens H. Jenden
Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhage®é&hmark

Victor Yakhot
Institute for Advanced Studies, Einstein Drive, Princeton, New Jersey 08540
(Received 12 February 2001; revised manuscript received 26 October 2001; published 13 February 2002

We investigate the Gledzer-Ohkitani-Yama@OY) shell model within the scenario of a critical dimension
in fully developed turbulence. By changing the conserved quantities, one can continuously vary an “effective
dimension” betweerd=2 andd=3. We identify a critical point between these two situations where the flux
of energy changes sign and the helicity flux diverges. Close to the critical point the energy spectrum exhibits
a turbulent scaling regime followed by a plateau of thermal equilibrium. The corrections due to intermittency
persist close to the critical point. We identify scaling laws and perform a rescaling argument to derive a relation
between the critical exponents. We further discuss the distribution function of the energy flux.
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Many theoretical and experimental results for fully devel-probabilty density functiofPDPF around this critical point.
oped turbulence have been offered over the last decade. Asimilar observation of a change of sign in the energy flux
different approach has been presented by Yakhldh which  as a function of a parameter was already made in a different
the method of generating functions by Polyak@y is gen-  shell model by Bell and Nelkif9]. In their model the dy-
eralized to the Navier-Stokes equations. Applying a renorhamics is not intermittent and the properties of the model are
malization group procedurgs] results in an estimate of a thus quite different from the GOY model.
critical dimension for turbulence, arourti~2.5, thus fol- Our starting point is the approximative approach to turbu-
lowing the foot steps of an original idea by Frisch andlence made by discretizing the wave number space by expo-
Fournier[4] but correcting the actual value of the dimension. nentially separating “shellsT5]. In this respect, we apply
The physical idea behind the existence of a critical dimenthe GOY model[6,7] which has been successful in giving
sion is related to the well known fact that the energy cascadgesults for intermittency corrections in agreement with ex-
in three dimensional turbulence is “forwardin k space  Perimentg8]; an agreement that is observed despite the fact
going from large to small scales, whereas for two dimenthat experiments usually monitor spatial intermittency,
sional turbulence it is backward, from small to large scalesWhereas the GOY model exhibits temporal intermittetfoy
This leads to the identification of a critical dimension be-Other results on the GOY model, sg0—-12). The starting
tween two and three at which the flux of energy changes it§oint is a set of wave numbeks=kor"(r =2 andk,=1 in
sign, and the amplitude of the field turns into a peak wherdhis papey and an associated complex amplitugie of the
there is no flux neither forward nor backward. In Réflthe  Velocity field. Each amplitude interacts with nearest and
theory is expanded around this critical point in terms of anext-nearest neighboring shells and the corresponding set of
ratio between two time scales. However, it is not possible t¢oupled ordinary differential equations takes the form
investigate the physical behavior in a noninteger dimension

directly, neither experimentally nor numerically. In this paper d 5 i N br ,

we therefore propose to study this type of criticality in a shell a’Lan Un=1Kp| @nUns 1Uni 2+ 5 Un-1Unia
model for turbulence[5]. In particular we focus on the

Gledzer-Ohkitani-YamadeéGOY) model[6—8] which exhib- Cn

_ : . ; . Uk ur |+ f 1
its well known conservation laws: in the three dimension 4 n-1-n-2 ng

(3D) version energy and helicity are conserved; in the two
d|men5|op(2D) Version energy and epstrop'hy are con;eryedwith n=1,...N, and boundary conditions,=by=c;=c,
It is possible tocontinuouslyary the “effective dimension

fth del by chanaing th d q t_tzaN_1=aN=0. The values of the coupling constants are
of the model by changing the second conserved quantity, oy by imposing conserved quantities. By conserving the

from a helicity to an enstrophy quantity. As the.energy iStotal energy=,|u,|2 when f, =v=0, we obtain the con-
alwaysconserved, we can study the energy flux directly as a f

function of the variation in the second conserved quantityS@iNtS@n+ by, 1+ ¢ni,=0. The time scale is fixed by the
and we identify a critical point, where the flux changes sign.conditiona, =1 leaving free the parametérby defining the
Indeed the second conserved quantity is nonphysical at thi€OUPIing constants as

point as expected. Nevertheless we are able numerically to

extract a series of different properties of the spectrum and the a,=1, by,=-4, c,=—(1-9). 2

The model also possesses a second conserved quantity of the
*Electronic address: mhjensen@nbi.dk form
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FIG. 1. (8 ,g\verage energy flux vs the wave numbewith N FIG. 2. (a) The spectrum(|u|) versusk for the 3D cases
=25 »=10"% ni=2 for 5=0.5(x), and e=2x10°%(+), 05 (0) and for e=2x107* (+), ... ,e=2X10" (x). Note
2X1077 (*), .. .,2x10"" (0)). Note that ass decreases the iner- the flat part of the spectrum developing @s+0. (b) A rescaling
tial range shrinks(b) Inverse energy flux wittN =33, v= 106 for plot of the spectra in Fig. 2 byju|)* (/€)% vs kx (el e,) %" [ e
€=—0.125. The forcing is on shell 15,5=(1+i)*10 %/ufs. A =10"% (¢) ande=10"7 (A)], wheree,=2x 1075 (*).

large scale viscosity is now appliédee the tejt

ool 23

(1-9)
={ —Im{KnUpUp 11| Uny ot Tunfl , (5
which leads to a relation betweenand §: 2¢=1/(6—1).

For 6<1 this relation requires complex values of where only the contributions of the nonlinear terms are con-
a, with Im(a)==/In2. In 3D turbulence helicityH  sidered in the time rate of change of the cumulative energy.
=J(V Xu(x))-u(x)dx is conserved, which in terms of shell From Eq.(5) we see that the last term vanishes&s 1,
variables takes the forifi1] causing a depletion in the energy transf&g]. This is ob-
served in the numerical simulations shown in Fida)l
where the inertial range of the flux shrinks é&s1— 5—0.
sz (= 1)U, 2 @) Note that in Fig. 1a) (as well as in all the subsequent simu-
o ni=nl o lations concerning the 3D side fé<1) we apply a forcing
on the formf,, =(1+i)x10"?/u} , with n;=2, in order to
ensure a constant input of the energynd thus a constant
when the values of parameters afe=3 and Re@)=1. flux). We reach similar conclusions when a constant deter-
In 2D turbulence on the other hand enstrophy ministic force is applied. Moving abové=1, the energy
= [|V xu(x)|?dx is conserved and this corresponds to theflux reverses going instead from small to large scales, see
parameter$=3, a=2 which on the shells takes the form Fig. 1(b). Therefore the poind=45.=1 defines a critical
Q=Ekﬁ|un|2. Note that energy is conserved for any value ofpoint where the energy flux for finite value of energy input
5. This gives us the possibility toontinuouslyvary the ef-  discontinuously jumps from positive to negative valigs
fective dimension [and thus the generalized helicity/ jump diminishes with the forcing amplitudg. Furthermore,
enstrophy(3)] by varying the parameted betweend= 3 the rate of injected generalized helicifyl3], given by

Q=2 kZuy/?, (3)

(3D) and §=3 (2D). 2a(—1)"ks Re(f uk), diverges at this poinftL4].
The critical point is identified by looking at the energy  Let us now turn to the spectra fé<1. As § is increased
flux through each shell which is given §$0] from §=0.5 ande— 0, the regime irk space of the energy
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transfer diminishes. Because energy transport is more diffi-
cult it is likely that a part of the spectrum, for large values of
k,, is in thermal equilibrium. This is shown in Fig. 2, where
the parametee is varied 1 decade for each spectrgnote
that in our spectra we plot/u,|) vs k,, which provides
similar information as plotting|u,|?)). We identified vari-
ous scaling laws associated with the spectra of Fig. 2. First of
all the dissipative cutofky moves in a systematic fashion as
a function ofe. We find the following scaling lawky~ e“d,

with a4q=0.3. The plateau in the spectfaquipartition of
energy among the shellsorresponds to the thermal equilib-
rium which overcomes the turbulent regime when the for- (@)

<lu, >

ward transfer of energy is reduced. We found that the level of 1€
the plateau scales witle as (|ug|)p~€e 7, where ay, 3 faa,
=0.28, thus finally turning into a diverging amplitude T 10k T ]
around the forcing scale. The turbulent, cascading, part of the N ; mﬁ\%\w ]
spectrum varies liké|u,|)~k™ %, as=0.4, taking into ac- X 102k ]
count corrections due to intermittenE§]. Finally, the criti- ‘X/ ; % E
cal wave numbek;, at which the spectrum crosses over = 103k * i
from turbulent behavior to thermal equilibrium, also moves v : 2 ]
with e, possibly likek.~ €“. To determinex, we balance 1074 , , 2
the contributions from the two regimes 1 102 10* 108 108
Kx(v /v,,) %
(luy= (Ul 25— e, © o /)
and obtain the following scaling law fd : FIG. 3. (@ The spectrum(|u|) vs k for the standard 3D case
8=0.5, »v=10"1° (O), and for e=2x103 and »=10*
ke~ €%, ac=ap/as=0.7, () (A), ..., 107 (+). (b) A rescaling of the curves ina) by

_ ) _ uly* (vl vq0) ~93 vs k* (v/v40) % wherev,,=10"1°.
showing that the scaling exponents are not all mdependerﬂ D) (v/vid 1o

[15]. This result can be verified by a simple rescaling of data. 0t . . .
Let us assume thtu,|)/{|uy|) is @ function ofk/k, alone, e—07, the peak is unstable and the energy is soon redistrib

e uted to the neighboring shells. The existence of a sharp tran-
e sition into the critical point was already indicated by a cal-
(unl) K culation of the maximal Lyapunov exponent which drops
—~f(—>, (8) sharply ase—0 [16]. In order to study the behavior of the
(lun))p Ke spectrum around the critical point in detail we have two pa-
where f(x) is such thatf(x)~x"%, x<1, and f(x)

rameters to vary, the “dimension” parametérand the vis-
~const, x>1. Then a data collapse is obtained by plotting cosity v. Figure 3a) shows a series of spectra fer=0.002
(Jup|)/ e~ et versusk/e*c. A good rescaling plot is obtained,

varying v. Again one observes the shoulder at lakgdhe
see Fig. ), when the estimated value,=0.7 is used. shoulder moves to hlghd{_when_the viscosity dec_reases.
. .__.The wave vector for the dissipative cutdff moves in the
Notice that the collapse of data does not apply to the d'SS'kolmo orov fashiork.~ »~ 3 The critical wave numbek
pative range, sinc&y andk; scale differently withe. Also 9 =y - c

notice that the rescaling has been done by keeping a refe, eems 1o scale with in the same way akq. This is con-

ence specum fedor < ) and et te oter specra 7160 8 e S (scaln pisee Pl ) were,
collapse onto it. Since there is no transfer of energy at théllarizgtion we?resgcale theaxis by (/ v, ¥ and the velocit
critical point, the nonlinear terms will not play any role and ' Y Wivio y

P —0.30
the equations will only include the dissipation and forcing axis by (v/vyo :

terms. This can be made quantitative by the fact that the state NOW“ con5|_der th_e oth"er. side of the critical p0|_nt, hamely
with a peak at the forcing scale on the “two-dimensional” side fos> 1. The behavior of 2D

shell models has been previously investigated in several pa-
pers[17—-19. A kind of “coupled GOY model"[18] gives an
,0> 9) inverse flux of energy, which is explained in terms of a mean
diffusive drift in a system close to statistical equilibrium, and
shell models for 2D do not seem to give an inverse energy
is a fixed point of Eq(1), which ate=0 is marginally stable cascade with the usual “5/3” spectrum. In order to extract
[16]. Indeed we find numerically a=0 that by starting the energy of the inverse cascade we need to add a large
with the fixed point Eq(9) the peak stays at the forcing scale scale viscosity to Eqg1) of the type— v’k,jzun . In Fig. (4)
and the amplitudes remain zero above but become nonzerae show the energy spectrum for the ca8e1.125, v
although small, below the forcing scale. On the contrary, for=10"16 and»’=10"1. The two branches of statistical equi-

f
u= ( 0,0,07,0,0, Ca

v
Ng
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FIG. 4. {Ju|) vs k for §=1.125 (@=3). The forcing isfs
=(1+i)*10"%u};. The two branches of statistical equilibrium
(|u|)~const(energy equilibriumand(|u|)~k %2 (generalized en-
strophy equilibrium are clearly visible.

FIG. 5. Rescaling of the PDF of the energy flux obtained for
shells in the “flat” part of the spectrum in Fig. 2 with=10"1,
€=3X%1078, for the shellsn=4,6,8,10,12. The PDF’s in each case
are rescaled by the standard deviation of the energy flux.

librium, energy and generalized enstrophy equilibrium, re- - L .
spectively, are clearly visiblésee[19] for details. more difficult and the regime ik space for transfer dimin

. ishes. This leads to the fact that part of the spectrum becomes
Let us turn our attention to the PDF for the energy flux at S S .
. . . flat as an indication of a thermal equilibrium. We believe the
different scales. It is well known that, in fully developed

Lo existence of this thermal equilibrium is dictated by the
turbulence, the PDFof velocity incrementsat the largest change in the energy transfer and could be a general propert
scales(small k) typically behaves like a Gaussian, slowly 9 oy 9 property

chanaing its form as one moves toward the small scalein systems where the transfer changes sign. The crossover
ging Between the turbulent, cascading part and the thermal equi-

(Iarge k), trning Into a ;hape where large events play Mibrium is determined by balancing the turbulent energy
Important r_ol_e giving a k|_nd of stretched exponential PD'.:'spectrum with a spectrum in thermal equilibrium. We iden-
Such nontrivial behavior is related to the property of multi- iify the scaling behavior of the crossover point and rescale

scajing .Of the structure f.uncFions. When a turbulent SC"."””%e spectra accordingly. The PDF of the thermal equilibrium
regime 1S detectgble as in Fig. 3, we observe that the Inters'hows simple scaling invariance although the statistics is not
mittency corrections appear to persist, even close=td.

However. in the flat part of the Spectrum of Fia. 2. the orob Gaussian. For analytical understanding of these results, one
ab'\ll'\{ Vd's’tlr'b tion b(laocomes 'ggr atrLIIar &b I?.s 'ch th‘;rt rewrites the “GOY” equations in terms of a generating func-

ity distributic Wi gerbut su tion techniqud 1,2] thus obtaining a set of coupled ordinary
the shape is simply rescaled onto a universal and almo

. . . ifferential equation$20]. One can further map these equa-
ls;)i/énrgetnc curve(rescaling by the standard deviafjorsee tions onto a Fokker-Planck equation for the distribution of

. . the exponentiated quantities. We will discuss this in a forth-
In this paper we have presented results for the existen P q

C . . .
of a critical point in the “GOY” shell model. Our main re- 8om|ng publication.
sults can be summarized as follows. At this critical point, We are grateful to P. Ditlevsen, G. Eyink, U. Frisch, P.
which lies between three- and two-dimensional behavior, thélohenberg, P. Olesen, A. Polyakov, |. Procaccia, B.
energy flux changes its sign, going from a forward to a backShraiman, and K. Sreenivasan for interesting discussions. We
ward transfer. Approaching this point from the “three- are also indebted to the ITP, Santa Barbara and the program
dimensional” side, the energy transfer becomes increasinglgn “Hydrodynamics Turbulence,” where this work started.
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