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Critical ‘‘dimension’’ in shell model turbulence
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We investigate the Gledzer-Ohkitani-Yamada~GOY! shell model within the scenario of a critical dimension
in fully developed turbulence. By changing the conserved quantities, one can continuously vary an ‘‘effective
dimension’’ betweend52 andd53. We identify a critical point between these two situations where the flux
of energy changes sign and the helicity flux diverges. Close to the critical point the energy spectrum exhibits
a turbulent scaling regime followed by a plateau of thermal equilibrium. The corrections due to intermittency
persist close to the critical point. We identify scaling laws and perform a rescaling argument to derive a relation
between the critical exponents. We further discuss the distribution function of the energy flux.
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Many theoretical and experimental results for fully dev
oped turbulence have been offered over the last decad
different approach has been presented by Yakhot@1# in which
the method of generating functions by Polyakov@2# is gen-
eralized to the Navier-Stokes equations. Applying a ren
malization group procedure@3# results in an estimate of
critical dimension for turbulence, arounddc;2.5, thus fol-
lowing the foot steps of an original idea by Frisch a
Fournier@4# but correcting the actual value of the dimensio
The physical idea behind the existence of a critical dim
sion is related to the well known fact that the energy casc
in three dimensional turbulence is ‘‘forward’’~in k space!
going from large to small scales, whereas for two dime
sional turbulence it is backward, from small to large sca
This leads to the identification of a critical dimension b
tween two and three at which the flux of energy changes
sign, and the amplitude of the field turns into a peak wh
there is no flux neither forward nor backward. In Ref.@1# the
theory is expanded around this critical point in terms o
ratio between two time scales. However, it is not possible
investigate the physical behavior in a noninteger dimens
directly, neither experimentally nor numerically. In this pap
we therefore propose to study this type of criticality in a sh
model for turbulence@5#. In particular we focus on the
Gledzer-Ohkitani-Yamada~GOY! model@6–8# which exhib-
its well known conservation laws: in the three dimensi
~3D! version energy and helicity are conserved; in the t
dimension~2D! version energy and enstrophy are conserv
It is possible tocontinuouslyvary the ‘‘effective dimension’’
of the model by changing the second conserved quan
from a helicity to an enstrophy quantity. As the energy
alwaysconserved, we can study the energy flux directly a
function of the variation in the second conserved quan
and we identify a critical point, where the flux changes si
Indeed the second conserved quantity is nonphysical at
point as expected. Nevertheless we are able numericall
extract a series of different properties of the spectrum and
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probabilty density function~PDF! around this critical point.
A similar observation of a change of sign in the energy fl
as a function of a parameter was already made in a diffe
shell model by Bell and Nelkin@9#. In their model the dy-
namics is not intermittent and the properties of the model
thus quite different from the GOY model.

Our starting point is the approximative approach to turb
lence made by discretizing the wave number space by ex
nentially separating ‘‘shells’’@5#. In this respect, we apply
the GOY model@6,7# which has been successful in givin
results for intermittency corrections in agreement with e
periments@8#; an agreement that is observed despite the
that experiments usually monitor spatial intermittenc
whereas the GOY model exhibits temporal intermittency~for
other results on the GOY model, see@10–12#!. The starting
point is a set of wave numberskn5k0r n(r 52 andk051 in
this paper! and an associated complex amplitudeun of the
velocity field. Each amplitude interacts with nearest a
next-nearest neighboring shells and the corresponding s
coupled ordinary differential equations takes the form

S d

dt
1nkn

2Dun5 iknS anun11* un12* 1
bn

2
un21* un11*

1
cn

4
un21* un22* D1 f nf

, ~1!

with n51, . . .N, and boundary conditionsb15bN5c15c2
5aN215aN50. The values of the coupling constants a
fixed by imposing conserved quantities. By conserving
total energy(nuunu2 when f nf

5n50, we obtain the con-

straintsan1bn111cn1250. The time scale is fixed by the
conditionan51 leaving free the parameterd by defining the
coupling constants as

an51, bn52d, cn52~12d!. ~2!

The model also possesses a second conserved quantity o
form
©2002 The American Physical Society05-1
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Q5( kn
auunu2, ~3!

which leads to a relation betweena and d: 2a51/(d21).
For d,1 this relation requires complex values
a, with Im(a)5p/ ln 2. In 3D turbulence helicityH
5*(“3u(x))•u(x)dx is conserved, which in terms of she
variables takes the form@11#

H5(
n

~21!nknuunu2, ~4!

when the values of parameters ared5 1
2 and Re(a)51.

In 2D turbulence on the other hand enstrophyV
5* u“3u(x)u2dx is conserved and this corresponds to t
parametersd5 5

4 , a52 which on the shells takes the form
V5(kn

2uunu2. Note that energy is conserved for any value
d. This gives us the possibility tocontinuouslyvary the ef-
fective dimension @and thus the generalized helicity
enstrophy~3!# by varying the parameterd betweend5 1

2

~3D! andd5 5
4 ~2D!.

The critical point is identified by looking at the energ
flux through each shell which is given by@10#

FIG. 1. ~a! Average energy flux vs the wave numberk with N
525, n510210, nf52 for d50.5(3), and e5231024(1),
231025 (* ), . . . ,231028 ~h!. Note that ase decreases the iner
tial range shrinks.~b! Inverse energy flux withN533,n510216 for
e520.125. The forcing is on shell 15,f 155(11 i )* 1024/u15* . A
large scale viscosity is now applied~see the text!.
03630
f

Pn5K 2
d

dt (
i 51

n Uui u2&

5 K 2ImXknunun11S un121
~12d!

2
un21D CL , ~5!

where only the contributions of the nonlinear terms are c
sidered in the time rate of change of the cumulative ene
From Eq. ~5! we see that the last term vanishes asd→1,
causing a depletion in the energy transfer@12#. This is ob-
served in the numerical simulations shown in Fig. 1~a!,
where the inertial range of the flux shrinks ase[12d→0.
Note that in Fig. 1~a! ~as well as in all the subsequent sim
lations concerning the 3D side ford,1) we apply a forcing
on the formf nf

5(11 i )31022/unf
* , with nf52, in order to

ensure a constant input of the energy~and thus a constan
flux!. We reach similar conclusions when a constant de
ministic force is applied. Moving aboved51, the energy
flux reverses going instead from small to large scales,
Fig. 1~b!. Therefore the pointd5dc51 defines a critical
point where the energy flux for finite value of energy inpuf
discontinuously jumps from positive to negative values~the
jump diminishes with the forcing amplitudef ). Furthermore,
the rate of injected generalized helicity@13#, given by
(n(21)nkn

a Rê f nun* &, diverges at this point@14#.
Let us now turn to the spectra ford,1. As d is increased

from d50.5 ande→0, the regime ink space of the energy

FIG. 2. ~a! The spectrum^uuu& versusk for the 3D cased
50.5 ~L! and for e5231024 (1), . . . ,e52310210 ~* !. Note
the flat part of the spectrum developing ase→0. ~b! A rescaling
plot of the spectra in Fig. 2 bŷuuu&* (e/e r)

0.28 vs k* (e/e r)
20.7 @e

51026 ~L! ande51027 ~n!#, wheree r5231025 ~* !.
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transfer diminishes. Because energy transport is more d
cult it is likely that a part of the spectrum, for large values
kn , is in thermal equilibrium. This is shown in Fig. 2, whe
the parametere is varied 1 decade for each spectrum~note
that in our spectra we plot̂uunu& vs kn , which provides
similar information as plottinĝ uunu2&!. We identified vari-
ous scaling laws associated with the spectra of Fig. 2. Firs
all the dissipative cutoffkd moves in a systematic fashion a
a function ofe. We find the following scaling law:kd;ead,
with ad.0.3. The plateau in the spectra~equipartition of
energy among the shells! corresponds to the thermal equilib
rium which overcomes the turbulent regime when the f
ward transfer of energy is reduced. We found that the leve
the plateau scales withe as ^uunu&pl;e2apl, where apl
.0.28, thus finally turning into a diverging amplitud
around the forcing scale. The turbulent, cascading, part of
spectrum varies likêuunu&;k2as, as.0.4, taking into ac-
count corrections due to intermittency@8#. Finally, the criti-
cal wave numberkc , at which the spectrum crosses ov
from turbulent behavior to thermal equilibrium, also mov
with e, possibly likekc;eac. To determineac , we balance
the contributions from the two regimes

^uunu&;^uunu&pl⇒k2as;e2apl, ~6!

and obtain the following scaling law forkc :

kc;eac,ac5apl /as.0.7, ~7!

showing that the scaling exponents are not all independ
@15#. This result can be verified by a simple rescaling of da
Let us assume that^uunu&/^uunu&pl is a function ofk/kc alone,
i.e.,

^uunu&
^uunu&pl

; f S k

kc
D , ~8!

where f (x) is such that f (x);x2as, x!1, and f (x)
;const, x@1. Then a data collapse is obtained by plotti
^uunu&/e2apl versusk/eac. A good rescaling plot is obtained
see Fig. 2~b!, when the estimated valueac50.7 is used.
Notice that the collapse of data does not apply to the di
pative range, sincekd and kc scale differently withe. Also
notice that the rescaling has been done by keeping a re
ence spectrum fixed~for e5e r) and let the other spectr
collapse onto it. Since there is no transfer of energy at
critical point, the nonlinear terms will not play any role an
the equations will only include the dissipation and forci
terms. This can be made quantitative by the fact that the s
with a peak at the forcing scale

u5S 0,0,0,
f

nknf

2
,0,0, . . . ,0D ~9!

is a fixed point of Eq.~1!, which ate50 is marginally stable
@16#. Indeed we find numerically ate50 that by starting
with the fixed point Eq.~9! the peak stays at the forcing sca
and the amplitudes remain zero above but become nonz
although small, below the forcing scale. On the contrary,
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e→01, the peak is unstable and the energy is soon redist
uted to the neighboring shells. The existence of a sharp t
sition into the critical point was already indicated by a c
culation of the maximal Lyapunov exponent which dro
sharply ase→0 @16#. In order to study the behavior of th
spectrum around the critical point in detail we have two p
rameters to vary, the ‘‘dimension’’ parameterd and the vis-
cosity n. Figure 3~a! shows a series of spectra fore50.002
varying n. Again one observes the shoulder at largek. The
shoulder moves to higherk when the viscosity decrease
The wave vector for the dissipative cutoffkd moves in the
Kolmogorov fashionkd;n23/4. The critical wave numberkc
seems to scale withn in the same way askd . This is con-
firmed by a finite size rescaling plot@see Fig. 3~b!#, where,
using scaling arguments similar to what were used for the
variation, we rescale thek axis by (n/n10)

3/4 and the velocity
axis by (n/n10)

20.30.
Now consider the other side of the critical point, name

on the ‘‘two-dimensional’’ side ford.1. The behavior of 2D
shell models has been previously investigated in several
pers@17–19#. A kind of ‘‘coupled GOY model’’@18# gives an
inverse flux of energy, which is explained in terms of a me
diffusive drift in a system close to statistical equilibrium, an
shell models for 2D do not seem to give an inverse ene
cascade with the usual ‘‘5/3’’ spectrum. In order to extra
the energy of the inverse cascade we need to add a l
scale viscosity to Eqs.~1! of the type2n8kn

22un . In Fig. ~4!
we show the energy spectrum for the cased51.125, n
510216, andn851021. The two branches of statistical equ

FIG. 3. ~a! The spectrum̂ uuu& vs k for the standard 3D case
d50.5, n510210 ~h!, and for e5231023 and n510210

(n), . . . ,1027 ~1!. ~b! A rescaling of the curves in~a! by
^uuu&* (n/n10)

20.30 vs k* (n/n10)
3/4, wheren10510210.
5-3
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librium, energy and generalized enstrophy equilibrium,
spectively, are clearly visible~see@19# for details!.

Let us turn our attention to the PDF for the energy flux
different scales. It is well known that, in fully develope
turbulence, the PDF~of velocity increments! at the largest
scales~small k) typically behaves like a Gaussian, slow
changing its form as one moves toward the small sca
~large k), turning into a shape where large events play
important role giving a kind of stretched exponential PD
Such nontrivial behavior is related to the property of mu
scaling of the structure functions. When a turbulent scal
regime is detectable as in Fig. 3, we observe that the in
mittency corrections appear to persist, even close toe50.
However, in the flat part of the spectrum of Fig. 2, the pro
ability distribution becomes wider at largerk but such that
the shape is simply rescaled onto a universal and alm
symmetric curve~rescaling by the standard deviation!, see
Fig. 5.

In this paper we have presented results for the existe
of a critical point in the ‘‘GOY’’ shell model. Our main re
sults can be summarized as follows. At this critical poi
which lies between three- and two-dimensional behavior,
energy flux changes its sign, going from a forward to a ba
ward transfer. Approaching this point from the ‘‘thre
dimensional’’ side, the energy transfer becomes increasin

FIG. 4. ^uuu& vs k for d51.125 (a53). The forcing is f 15

5(11 i )* 1024/u15* . The two branches of statistical equilibrium
^uuu&;const~energy equilibrium! and^uuu&;k23/2 ~generalized en-
strophy equilibrium! are clearly visible.
,

M.
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more difficult and the regime ink space for transfer dimin-
ishes. This leads to the fact that part of the spectrum beco
flat as an indication of a thermal equilibrium. We believe t
existence of this thermal equilibrium is dictated by t
change in the energy transfer and could be a general prop
in systems where the transfer changes sign. The cross
between the turbulent, cascading part and the thermal e
librium is determined by balancing the turbulent ener
spectrum with a spectrum in thermal equilibrium. We ide
tify the scaling behavior of the crossover point and resc
the spectra accordingly. The PDF of the thermal equilibriu
shows simple scaling invariance although the statistics is
Gaussian. For analytical understanding of these results,
rewrites the ‘‘GOY’’ equations in terms of a generating fun
tion technique@1,2# thus obtaining a set of coupled ordina
differential equations@20#. One can further map these equ
tions onto a Fokker-Planck equation for the distribution
the exponentiated quantities. We will discuss this in a for
coming publication.
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Hohenberg, P. Olesen, A. Polyakov, I. Procaccia,
Shraiman, and K. Sreenivasan for interesting discussions
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FIG. 5. Rescaling of the PDF of the energy flux obtained
shells in the ‘‘flat’’ part of the spectrum in Fig. 2 withn510210,
e5331028, for the shellsn54,6,8,10,12. The PDF’s in each cas
are rescaled by the standard deviation of the energy flux.
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